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Massive Neutrinos

* Super Kamiokande found |
neutrino oscillations in 1999

* Measures mass splitting
between particles

* Neutrinos have mass




Current Lower Limits

* Neutrino oscillations:
Am%l — (7.59 T 0.21) X 10_56V2

Am3, = (2.434+0.13) x 10 3eV?

(Particle Data Group)

* At least two massive flavours
* Total mass: M, > 0.05 eV



Upper Limits

Oscillations don’t measure total mass
Tritium beta decay m,, < 2.2 eV
Future (KATRIN) m,,, < 0.2 eV
Challengingas m,, << m, m

P
Gap between 0.05 and 0.6 eV



Massive Neutrinos

Last standard model particles without known mass

“All science is either physics or stamp collecting”
— Ernest Rutherford

The first stamp The last stamp?
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Cosmic Neutrino Background

Produced at nucleosynthesis
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Simplest upper bound by imposing
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Background Effect
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Background Effect
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Decoupling Today

M <13eV (WMAP)



Perturbations

@,

Massive neutrinos are

hot (later warm) dark matter



Perturbations
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Thermal pressure prevents clustering
below free-streaming length

Suppresses matter power spectrum



Linear Growth

Much of the effect from growth function

Background expansion and large scales:

Qv ~ Qcepw + €2,

Small scales:

Q1\/[ ™ QCDM
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Simulating Neutrinos as Particles

Neutrinos are fast-moving dark matter:
Add an extra particle species

Neutrinos (Viel 2010)
Cold Dark Matter (hot dark matter)



Particle Neutrinos

Mixed DM model -
* Neutrinos: light particles, large initial velocity
« CDM: heavy particles, low initial velocity
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Particle Neutrinos

Mixed DM model —
* Large thermal velocity numerically tricky
* Doubles memory consumption
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Non-Linear Neutrino Clustering

Change in A® (k) for M,=0.3,2=0
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Non-Linear Neutrino Clustering

Change in A® (k) for M,=0.3,2=0
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Maximal Suppression

* Linear theory:

0Py
Pr,

~ —8f,

e Non-linear result:




Non-Linear Neutrino Clustering

Change in A? (k) for M,=0.3,2=0
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Good news for linear theory forecasts:
- constraints are tighter

Bad news for halofit forecasts:
- constraints are weaker



Particle Neutrinos

* Some problems with this method
— Shot noise
— Early-time relativistic effects
— No neutrino hierarchy

 Hard and expensive to perform



Shot Noise

* Neutrinos cluster very weakly, so 1/N shot
noise can dominate at high z or low mass

* Can mitigate with more particles
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Early-Time Relativistic Effects

Particles assume:

O, (a) = Va™?

But at early times:
QO (a) =206

Cosmologically interesting masses have

Q,(a=0.01)>Qa""



Picking Initial Redshift

Avoiding transients Non-relativistic
matter density

EARLY LATE

* Initial redshift 24 for M,=0.15 eV
* Up to redshift 99 for M, = 0.6 eV



Neutrino Hierarchy

* Neutrinos are three species with different
masses

 Matters for M < 0.15
* Can include 2-3 particle species



Particle Neutrinos

* Some problems with this method
— Shot noise
— Early-time relativistic effects
— Neglects neutrino hierarchy

* These problems are easy analytically
* Look for analytic method



Linear Neutrinos, Non-Linear CDM
(Brandbyge & Hannestad)

* Neutrinos free-stream on non-linear scales
* Assume neutrino power is as in linear theory

Pxp (k) = fC’DMP]%TL,CDM + fVPl%,l/

From N-body simulation From CAMB



Linear Neutrinos, Non-Linear CDM
(Brandbyge & Hannestad 2009)

* How good is this approximation?
* Fine for M=0.15
* 1% error in P(k) for M = 0.6:
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Linear Neutrinos, Non-Linear CDM
(Brandbyge & Hannestad)

Free to compute

Avoids shot noise
Manifestly correct in linear regime

Neglects effects of non-linear DM growth on
neutrino distribution



Why?

CDM clustering sources neutrino clustering

00 o

Deeper wells due to non-linear DM growth:
Neutrinos cluster more than linear theory




Our Improvement

* Calculate CDM power spectrum every
timestep

* Calculate using linear theory neutrino power
spectrum sourced by the non-linear CDM
potential

 Add this to the CDM



Particle vs. Fourier-Space
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Particle vs. Fourier-Space
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=139
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Neutrino power at z=0

Excess clustering

Linear theory
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Neutrino power spectrum

Neutrinos in the slow tail of the velocity
distribution cluster nonlinearly at z< 0.5

Extra clustering in regions where CDM is
clustering vastly more

Low matter density
Doesn’t measurably affect CDM



Conclusion

* Improved method accurate in non-linear
regime

* Free —same cost as simulating CDM

* Easy to add extra physics, eg, neutrino
hierarchy.

PUBLIC CODE
https://github.com/sbird/fs-neutrino



